Flexible Mixed-Potential-Type (MPT) NO2 Sensor Based on An Ultra-Thin Ceramic Film

نویسندگان

  • Rui You
  • Gaoshan Jing
  • Hongyan Yu
  • Tianhong Cui
چکیده

A novel flexible mixed-potential-type (MPT) sensor was designed and fabricated for NO₂ detection from 0 to 500 ppm at 200 °C. An ultra-thin Y₂O₃-doped ZrO₂ (YSZ) ceramic film 20 µm thick was sandwiched between a heating electrode and reference/sensing electrodes. The heating electrode was fabricated by a conventional lift-off process, while the porous reference and the sensing electrodes were fabricated by a two-step patterning method using shadow masks. The sensor's sensitivity is achieved as 58.4 mV/decade at the working temperature of 200 °C, as well as a detection limit of 26.7 ppm and small response time of less than 10 s at 200 ppm. Additionally, the flexible MPT sensor demonstrates superior mechanical stability after bending over 50 times due to the mechanical stability of the YSZ ceramic film. This simply structured, but highly reliable flexible MPT NO₂ sensor may lead to wide application in the automobile industry for vehicle emission systems to reduce NO₂ emissions and improve fuel efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deconvoluted Si 2p Photoelectron Spectra of Ultra thin SiO2 film with FitXPS method

The main impetus for our research is provided by the growing interest worldwide in ultra thin silicon dioxide on silicon based nano devices. The obvious need for better knowledge in the ultra thin gate silicon dioxides, is motivated both by interests in fundamental research and phenomenology as well as by interests in possible applications, which can be found with better fitting of experimental...

متن کامل

Characterization of organic ultra-thin film adhesion on flexible substrate using scratch test technique

The mechanical properties of interfaces and more precisely the adhesion are of great importance to understand the reliability of thin film devices. Organic thin film transistors (OTFT) on flexible substrate are a new class of electronic components. Since these devices are flexible and intended for different fields of application like sensors and displays, they will undergo a lot of mechanical a...

متن کامل

Ultra-smooth glassy graphene thin films for flexible transparent circuits

Large-area graphene thin films are prized in flexible and transparent devices. We report on a type of glassy graphene that is in an intermediate state between glassy carbon and graphene and that has high crystallinity but curly lattice planes. A polymer-assisted approach is introduced to grow an ultra-smooth (roughness, <0.7 nm) glassy graphene thin film at the inch scale. Owing to the advantag...

متن کامل

Precision optical displacement sensor based on ultra-thin film photodiode type optical interferometers

The design and fabrication of our compact precision optical displacement sensor (PODS) are based on the newly developed ultra-thin film photodiode with its active layer thinner than a half of the incident light wavelength. In this paper, a detailed description of the principle, design, fabrication process and performance of PODS for application in both smooth and rough surfaces will be given.

متن کامل

Flexible CMOS electronics based on p-type Ge2Sb2Te5 and n-type InGaZnO4 semiconductors

Ultra-thin p-type chalcogenide glass Ge2Sb2Te5 (GST) semiconductor layers are employed to form flexible thin-film transistors (TFTs). For the first time, TFTs based on GST show saturating output characteristics and an ON/OFF ratio up to 388, exceeding present reports by a factor of ~20. The channel current modulation is greatly enhanced by using ultra-thin 5 nm thick amorphous GST layers and 20...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017